On Cuts in Ultraproducts of Linear Orders Ii

نویسنده

  • MOHAMMAD GOLSHANI
چکیده

We continue our study of the class C (D), where D is a uniform ultrafilter on a cardinal κ and C (D) is the class of all pairs (θ1, θ2), where (θ1, θ2) is the cofinality of a cut in Jκ/D and J is some (θ1 + θ2)-saturated dense linear order. We give a combinatorial characterization of the class C (D). We also show that if (θ1, θ2) ∈ C (D) and D is א1-complete or θ1 + θ2 > 2κ, then θ1 = θ2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

σ-Entangled Linear Orders and Narrowness of Products of Boolean Algebras

We investigate σ-entangled linear orders and narrowness of Boolean algebras. We show existence of σ-entangled linear orders in many cardinals, and we build Boolean algebras with neither large chains nor large pies. We study the behavior of these notions in ultraproducts. ∗ Partially supported by the Deutsche Forschungsgemeinschaft, Grant No. Ko 490/7-1. Publication 462.

متن کامل

Vive la différence II. The Ax-Kochen isomorphism theorem

We show in §1 that the Ax-Kochen isomorphism theorem [AK] requires the continuum hypothesis. Most of the applications of this theorem are insensitive to set theoretic considerations. (A probable exception is the work of Moloney [Mo].) In §2 we give an unrelated result on cuts in models of Peano arithmetic which answers a question on the ideal structure of countable ultraproducts of Z posed in [...

متن کامل

. L O ] 1 5 A pr 1 99 3 Vive la différence II . The Ax - Kochen isomorphism theorem

We show in §1 that the Ax-Kochen isomorphism theorem [AK] requires the continuum hypothesis. Most of the applications of this theorem are insensitive to set theoretic considerations. (A probable exception is the work of Moloney [Mo].) In §2 we give an unrelated result on cuts in models of Peano arithmetic which answers a question on the ideal structure of countable ultraproducts of Z posed in [...

متن کامل

Cuts of Linear Orders

We study the connection between the number of ascending and descending cuts of a linear order, its classical size, and its effective complexity (how much [how little] information can be encoded into it).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016